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Abstract—There has been a significant effort to develop
millimeter-wave active-array antennas for communications and
radar applications [1]-{6], [31], [34], [35]. A dielectric waveguide
is a promising medium for this application. However, the
integration of active devices, transmission media, and antennas
has been difficult to achieve. This paper presents the first
successful demonstration of a phase locked array of millimeter
wave grating surface emitters (MMWGSE). We discuss three
aspects of MMWGSE: 1) The achievement of an optically steered
millimeter wave grating surface emitter. 2) The demonstration
of a frequency locked array of millimeter wave grating surface
emitters. 3) Rigorous analytical studies of efficiently coupling
power from a millimeter wave semiconductor device, to a
waveguide which incorporates grating surface emitters. This
work leads to a full monolithic array using pseudomorphic high
electron mobility transistor (PHEMT)-devices.

I. INTRODUCTION

HERE IS A NEED for the development of high efficiency

high power solid state amplifiers that can replace con-
ventional amplifier combining circuits in order to reduce the
losses in the splitters/combiners guiding structures. This can be
achieved by coupling the waves into and out of the amplifiers
through radiating elements (space combining). This approach
has led to an increased interest in the area of quasi-optical and
spatial power amplification, since some of the added benefits
of spatial power combining are: graceful degradation, and the
realization of significant output power levels from modest size
transistors. The use of lower power transistors is beneficial
to the spatial combining scheme as they have lower cost
and are, in general, more efficient than those with relatively
higher power outputs. Spatial combining at X -band has been
successfully demonstrated by others [7]-[10], for example:

1) A nine HEMT spatial amplifier at X -band. The amplifier
was constructed by interconnecting many devices by
microstrip lines. The maximum measured value of gain
was found to be 5.6 dB, and the 3-dB bandwidth of 1
GHz was centered at 10.9 GHz.

2) A 4x4 array was constructed at 10 GHz. The measured
results show an EIRP of 25 dBW. an output power
greater than 4W, and a dc-rf conversion efficiency
greater than 18%. Each element consists of a MMIC
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Fig. 1. Millimeter-wave surface emitter with optically controlled gratings.

amplifier and a microstrip antenna coupled at its prox-
imity.

3) A 4x4 spatial combining array with strongly coupled
Gunn oscillators was demonstrated.

4) A 100 element heterojunction bipolar transistor (HBT)
grid amplifier was demonstrated at 10 GHz. Self-biased
HBT devices were used as the active devices. The
grid had a 10 dB gain and a 1 GHz 3dB bandwidth.
The maximum output power was 450 mW, and a 5%
efficiency was reported.

The integration of active devices, transmission media, and
antennas has been difficult to achieve at mm wave frequencies.
Therefore, the task of millimeter-wave system design is ham-
pered by the unavailability of high-power, compact, broadband
millimeter-wave emitters. Available millimeter-wave generat-
ing devices, distribution elements, and radiating structures of
integrated emitters are multi-planar and require complicated
feed elements, which all radiate and degrade the quality
of the desired space combined signal. One solution to this
problem is the use of millimeter-wave grating surface emitters
(MMWGSE), a concept that was introduced in 1982 and
shown in Fig. 1.

Recently, we have demonstrated key aspects of this concept:
1) The optical steering ability of the millimeter wave grating
surface emitter, up to 30°. 2) The frequency locking of the
array of millimeter wave grating surface emitters (MMWGSE).
Up to six IMPATT-based oscillators, operating at 62 GHz, have
been mutually locked in a 2-D array utilizing top-metallized-
image (TMI) guides with slot-type gratings. However, the
far-field of this structure did not show a confined beam
since no provision was made for phase adjustments between
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stages. 3) A rigorous analytical study of the coupling scheme
from a millimeter wave semiconductor device to a waveguide
incorporating grating surface emitters. Theory indicates that a
power coupling efficiency to the fundamental waveguide mode
of as high as 65% can be achieved.

This paper describes our efforts to obtain high power active
antennas at millimeter waves. We lead the reader through
a series of tasks, showing how the constraints of our goals
influence design decisions and changes in our approach.

The investigation of IMPATT sources using both fixed
and optically induced gratings as the antenna clements is
included. We show how system constraints have caused the
redirection of the investigation to PHEMT active elements.
The latter became attractive because of the recent progress in
the development of high efficiency power PHEMT amplifiers
at 60 GHz. The change in active device causes a change in the
wave guiding system resulting in a fixed grating in microstrip
as the antenna element.

In this paper we not only list the many areas of technology
that we have investigated, but also describe the research
process leading up to our final methodology.

In Section II we discuss optically induced gratings and show
how we have achieved greater than 30° steering ability through
the application of a variable periodic optical source.

In Sections III and IV we describe the properties of the TMI
guide and analyze the coupling from the probe to the guide
respectively showing the feasibility of up to 65% coupling
efficiency.

In Section V we show how the above concepts lead to
the active array configuration. Experimental results of this
array agree very well with our predicted results. However,
the limitations of IMPATT sources have led us to consider
the use of HEMT’s and MMIC’s which we discuss in Section
VI. We have migrated from TMI guide to microstrip while
preserving the approach of the previous works. Results were
very encouraging and, once again, have agreed with theoretical
predictions. This represents a milestone for an active antenna
array utilizing PHEMT at 60 GHz.

II. OPTICALLY INDUCED GRATINGS IN SILICON AND
SILICON ON SAPPHIRE (SOS) DIELECTRIC GUIDES [3]

The propagation velocity of modes in the dielectric waveg-
uides can be varied dynamically by either electrically or
optically controlling the dielectric constant. At millimeter-
wave frequencies, a promising technique for controlling the
dielectric constant of materials is the use of free-carricr offccts
in the material.

We have extended our dielectric guide work, in which
we use thin layers of a uniform plasma concentration for
controlling the dielectric constant, to layers with periodically
varying concentrations of plasma. Periodic plasma regions are
obtained along the axis of propagation by using a linear array
of injection lasers. The period is varied by exciting specified
lasers of the array.

The first optically induced grating experiment was per-
formed using a 1.4x1.4 mm dielectric guide. The mask used
had a 0.2 mm grating stripe width and a 1.85-mm grating
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Fig. 2. Experimental setup for a millimeter-wave surface emitter with opti-
cally controlled gratings.

period. Teflon clamps were used to hold the emulsion mask
in contact with the guide (with the emulsion side touching
the guide). The emulsion masks served to create a periodic
pattern of laser energy on the dielectric guide when illuminated
by our high power laser diode array. Teflon and nonmetallic
emulsion materials were selected to minimize interference with
the millimeter waves. A 2D edge-emitting laser diode array
with a power conversion efficiency of 40% was used as the
optical source (Fig. 2). The output of the array was adjusted
to about 150 W. This array was pulsed at a repetition rate of
100 Hz with a pulse width of 10 us. An emulsion and a 2-D
edge emitting laser diode array were used to induce a grating
in a dielectric guide carrying a 60 GHz signal, and the far-field
angle at which the peak in the pattern was observed, , depends
on the grating period, d. This angle increases with increasing
period: § = 90° + sin™' [(A\,/Ay) — (Ao/d)] where A, and
Ag4 are the free space and guide wavelength, respectively. The
steering angle exceeded 30° from broadside as demonstrated
by comparing the main lobe angle for five different masks.
The measured and the theoretical values of these angles are
illustrated in Fig. 3. Since we are using an incoherent laser
source with a beam divergence of +26°, the period of the
induced grating is slightly greater than the period of the printed
grating on the mask. Therefore the far field angle is greater
than the expected angle by a few degrees. Fig. 4 depicts SOS
optically induced gratings (OIG) steering at 60 GHz.

III. TMI GUIDE MODES [11]-[14]

In this work, we analyze a new coupling and waveguide
structure designed to meet the needs for efficiently coupling
power from a millimeter-wave semiconductor device, such as
an IMPATT. The waveguide incorporates a grating surface
emitter (IMPATT devices at 60 GHz were considered because
of their high power capability).

The photograph in Fig. 5 identifies the critical parts of
the millimeter-wave grating surface emitter (MMWGSE). An
IMPATT is mounted at the bottom of a cylindrical cavity in
the ground plane below the waveguide (see Fig. 6). The RF
energy is coupled into the waveguide through a cylindrical
post coming from the top of the IMPATT, passing through the
dielectric, and contacting the top metal. Periodic slits in the top
metal form a second-order grating which acts as the antenna.
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Fig. 3. The measured and theoretical main lobe angle for various grating
periods (in silicon guide).
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Fig. 4. Steering at 60 GHz (in SOS guide).
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Fig. 5. Photograph of device showing the critical parts.

This structure introduces several beneficial features that
maximize power coupling into the waveguide, facilitates mu-
tual coupling of IMPATTS in the longitudinal direction for
linear arrays, and provides energy for lateral coupling to
adjacent waveguides through leaky waves for two-dimensional
arrays. In the following paragraph we present a model for
understanding the MMWGSE. In addition we calculate the
power coupling into the waveguide and cite measurements in
support of the model.

The waveguide consists of a top-metallized dielectric of
height b and width 24 over a ground plane forming a top-
metallized image guide (TMI-guide) which is strongly similar
to an H-guide. We justify this claim by comparing the modes
of the two waveguides. We numerically solve the vector
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Fig. 7. Comparison of numerical solution for modes in the TMI-guide and

analytic solutions for modes in an H-guide.

wave equation for the TMI-guide and analytically solve the
wave equation for the H-guide [15], [16]. Fig. 7 shows
that the fundamental model of both guides has the same
guided wavelength as a function of width. Furthermore, the
wavelengths of the next order modes are within 5% of one
another.

H-guides support two classes of modes bound to the di-
electric which are denoted by PE,,,, and PM,,,,,. The PE,,o
modes, which have no variation in the y direction and therefore

'no z component, are equivalent to TE,,,o modes and are the

modes that are launched by a uniform source (with respect to
y). If the source is also symmetrical in both placement and
current flow (with respect to z), then only even PE,,, modes
will be excited. Lateral leaky modes, which are present in
finite H-guides (and therefore TMI-guides), reduce the power
coupling from the post to the bound modes.

IV. POST EXCITATION OF THE WAVEGUIDE

Complete theoretical solutions for the coupling of RF power
using a probe in a rectangular metal waveguide have been
obtained [17]. Because of the difficulty in extending this earlier
work to dielectric guides, we have used a different approach.
Since the TMI-guide is an open guide with both continuous
and discrete spectrums, we approximate the TMI-guide by
an H-guide and then close the ends to form a rectangular
waveguide as shown in Fig. 8. This configuration has several
advantages: a) the closed waveguide makes the spectrum
discrete, thereby simplifying the mathematics, b) the modes
may be calculated analytically using the transverse-resonance
method [18], and c) by letting the waveguide width, 2c, go to
infinity we recover the H-guide.

Several modes of this waveguide are shown in Fig. 9. The
fundamental mode is bound to the dielectric and the higher-
order modes belong to the rectangular waveguide. These
higher order modes approximate the leaky modes of the H-
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loaded rectangular waveguide

guide (TMI-guide). As c is increased, the bound mode remains
unchanged but the higher-order modes increase in number,
thereby approximating the continuous part of the spectrum.
Fig. 10 shows the mode spectrum for the even modes.

The calculation of coupling from the post to the waveguide
modes is based on the assumption that the post thickness is
negligible (z direction) and it can be treated as a rectangular
strip. Although this is a serious assumption, we believe that it
primarily affects an equivalent circuit for the post rather than
the power coupling from the cavity to the waveguide.

Overlap integrals of the strip and the modes are computed.
Since the overlap integral is proportional to the power coupled
to a mode, the ratio of the overlap integral of the dielectric
bound mode to those of all the propagating modes is the
power coupling coefficient. Fig. 11 shows the results of these
calculations for several values of post diameter, d, and rect-
angular waveguide width. We found that the power coupling
coefficient varied linearly with respect to \/a/c. When the
calculations are extrapolated to ¢ — oo, the power coupling
coefficient for the H-guide (TMI-guide) is found.

Measurements were made in TMI-guides with and without a
grating [19]. On structures without the grating we measured the
power coupled to the guides by inserting a tapered section of
TMI-guide into a standard V-band measurement fixture based
on a rectangular waveguide. Record power was achieved: 427
mW at 62 GHz, as measured with a standard V'-band metal
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waveguide test bed. This is a factor of four higher than power
from oscillators that were fabricated from either dielectric
waveguide or image guide. We compared this power to the
power achievable by the same IMPATT in a reduced height
coaxial metal cavity and found the ratio to be 0.65, which
closely corresponds to our calculation of 0.62 as shown in
Fig. 11.

V. 2-D ACTIVE ANTENNA UTILIZING
IMPATT DEVICES [19]-[28]

Two IMPATT diodes have successfully and repeatedly been
mutually locked to one another in one TMI guide with a
93% grating. Fig. 12 shows a comparison of measured and
calculated far-field patterns. The calculated far field is based
upon the theoretical near field pattern for a single propagating
bound mode which varies as exp (—|az| + j(A¢/2) sign (z))
where A¢ is the excess phase introduced across the post
coupling region and « is the attenuation rate in the waveguide
due to the grating radiation and losses.

The far field has two symmetrical split beams. The symmet-
rical beams are due to the two grating antennas being situated
on either side of the millimeter wave source and radiating
away from the second bragg condition. The split beam is a
consequence of phase delays introduced by the IMPATT/post
structure as shown in Fig. 12. The split in each lobe is due to
an estimated phase shift of about 90°. The agreement between
the two patterns supports our contention that a single bound
mode exists. The gain of this active antenna was measured to
be 10 dB approximately.

A new set of measurements featuring three IMPATT diodes
oscillating at the frequency of 61.7 GHz was performed.
In these tests, all three IMPATT devices in the linear array
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Fig. 14. The right and left oscillators of the three element linear array are
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Fig. 15. The right and left oscillators are locked to one another and are
beating with the center cell of the three element linear array.

locked to one another. Fig. 13 depicts diode oscillation in the
left circuit of the linear array. Fig. 14 depicts the right and
left circuits locked to one another. Fig. 15 depicts the right
and left circuits locked and the center beating with it (just
before locking). Fig. 10 depicts the three diode MMWGSE, in
operation (all oscillator circuits locked to one another). Each
time an additional diode was biased, the power level emitted
by the active, linear array and detected in the far-field increased
(by an average of 2.25 dB with each additional diode). The
far field of this structure did not show a confined beam, since
no provision was made for phase adjustments.

Finally, we were successful in introducing two linear arrays,
each consisting of three locked IMPATT oscillators, side by
side (constituting a 2-D array having six locked IMPATT
devices), Fig. 17. This accomplishment indicates that a large
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Fig. 16. All three elements of the linear array are biased and locked to one
another.

Fig. 17. 2-D array.
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number of millimeter wave devices can be locked to one
another through MTT guides without the utilization of isolators.
The incremental phase between the radiating elements is

‘adjusted, thus a far field can be achieved with a confined

main beam. However, the IMPATT diode is a one port device,
and its energy is coupled to the gratings on both sides of
the IMPATT cavity. Hence, phase adjustments as well as the
gratings’ uniformity are very critical.

VI. A LINEAR ACTIVE ANTENNA UTILIZING PHEMT—A
FIRST STEP FOR MONOLITHIC ARRAY CONFIGURATION

As a consequence of;: 1) the difficulty in providing a single
main beam when using an IMPATT device between two sets
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of gratings (when the gratings are radiating off the Bragg
condition), 2) the increased difficulty in processing IMPATT
devices utilizing the MMIC approach, and 3) the availability
of potential high efficient high power PHEMT’s, we have
investigated the possibility of replacing the IMPATT devices
by PHEMT devices.

PHEMT’s are making rapid progress in millimeter wave
power amplifier applications, and very encouraging results are
being reported for as high as 94 Hz [29], [30].

TRW [29] has reported a two stage amplifier with better
than 370 mW output power, a compressed gain of 7 dB and
greater than 11% power-added efficiency over the frequency
range of 59.5-63.5 GHz. With low loss planar combiners, these
modules produced an output power of 740 mW with a power
gain of 11.68 dB.

VII. MICROSTRIP BASED GRATINGS

The design of wideband microstrip arrays is outlined here.
A simple configuration of series or parallel arrays is used. By
selecting the resonant frequency of each element according
to the bandwidth requirements, a reasonably good bandwidth
with acceptable VSWR can be achieved. Hence, the return loss
can be made flat rather than selective at any specific frequency.
A large number of elements and wide band match-terminations
for traveling wave arrays need to be used. Elements are
connected to the main feed at a distance of n),/2 from the
termination, and spaced ), /4 apart as each segment is a A, /4
matching transformer to the 50 ohms. A § — k diagram can be
used to derive the propagation characteristics of this periodic
structure as shown by [33] and given by the following formula

2o

. 0 kd
coskd—i—j2Z11 sin k
€08 Bud = 7
1~ j=—2sinkd
]Z12
fa =B+ ja

ko =27 \/Zett [ Ao (1)

where 3, is the complex propagation constant, Z, and % are
the feedline characteristic impedance and wavenumber respec-
tively, Zy; and Z;3 are the self and mutual impedances of the
resonant element taking successive coupling into account, d is
the interelement spacing, k, is the effective wavenumber, and
€err 18 the effective dielectric constant.

The bandwidth of these radiating elements is limited due to
the existence of stop bands in the k¥ — 8 diagram. The main
beam direction can be calculated from the following equations

@

dsinf + \/egl = \ = %

where 6 is the main beam angle, d is the interelement spacing
in air, / is the length of the transmission line joining the
successive elements, ¢ is the speed of light in the dielectric,
e, is the dielectric constant, and f is the frequency of
operation [33]. The amplitude distribution along the array can
be adjusted for low side lobe level performance simply, by
changing the width of these radiating patch elements.

Simple calculations using d = 1.78 nm, [ = 0.1 mn, f =
60 GHz, £, = 13 have indicated a main beam angle of 35
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Fig. 21. The measured radiation pattern of two subarrays.

degrees off broadside (Fig. 19), which is in close agreement
with the measurements, as seen in Fig. 20.

A combined PHEMT amplifier with a microstrip grating an-
tenna comprises a “unit cell.” Fig. 22 depicts the combination
of two unit cells creating a one-dimensional (linear) antenna.

Experimental Results:

We have analyzed the periodic structure using a circuit ana
lysis program (Touchstone), and an EM Simulator (Ensemble).
The structure was modeled as successive wide transmission
lines of 0.13 mm in width and 1.68 mm in length that are
followed by narrow transmission lines 0.02 mm in width
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Fig. 22. Two unit cells creating a one-dimensional (linear) antenna.

and 0.1 mm in length. The structure consisted of 7 such
narrow lines connected to 50-ohm terminations on both sides.
The analysis showed a good VSWR performance over the
55-60 GHz frequency range (less than 2:1). The measured
results agree closely with the predicted results. In addition,
a transmission loss of 3 dB was measured over an overall
transmission line of 10 mm in length (that includes all succes-
sive gap-discontinuities), which matches the predicted values
closely.

We have used both (1), (2) and the EM simulation program
ENSEMBLE to predict the radiation pattern of this series fed
array. Equation (2) showed that a main beam should exit at
an angle of 35 degrees off broadside. The radiation pattern
as well as input-output return loss were also calculated. The
pattern at 60 GHz, for example, has a beam at 35 degrees,
which is very close to the value predicted by (2) and agrees
very well with the measured results as seen in Fig. 20. The
side lobe levels are relatively high since no effort was directed
towards lowering their levels by controlling the amplitude or
phase distribution of the whole array.

The antenna gain was measured relative to a standard
feedhorn. The feedhorn was measured first in order to calibrate
the system. Measurements of the microstrip grating antenna
showed a 4 dB higher gain as compared to the horn antenna,
indicating a relatively high 65% efficiency as calculated by
G/A = (4n/X)n.

Two such subarrays were connected in cascade to inves-
tigate spatial combining. The two subarrays were spaced
400 mils apart and the array factor of such an assembly
is shown in Fig. 21. As expected the combined measured
pattern showed the power combining from the two subarrays
as the signal was increased by almost 2 dB, and the sidelobe
levels and the number of nulls are related to the spacing
between the two subarrays. Performance of this array can
be significantly improved by eliminating the long section of
interconnecting transmission lines between the two subarrays
and by introducing some phase adjustments. Based on the
input power of 5 mW, the MMIC amplifier power gain of
6 dB at 56.5 GHz, and a radiated efficiency of 65%. the
estimated output power of a unit cell is 13 mW. The output
power from the MMIC amplifier chip used in our experiments
saturated above 5 mW of input power. The radiating structure
has yielded a bandwidth of at least 1 GHz. This is the
first demonstration of an active linear array antenna utilizing
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PHEMT at V-band. Furthermore, this design configuration
lends itself to a monolithic implementation.

VIII. CONCLUSION

The three major components for a steerable millimeter
wave active antenna were obtained: 1) an optically steered
millimeter wave grating surface emitter with a 30° shift;
2) a phase locked active antenna with up to six IMPATT
oscillators; and 3) an analysis of a new coupling structure
and waveguide. Theory indicated a single bound mode with
a coupling efficiency of as high as 65%. In addition, a linear
active antenna utilizing two PHEMT amplifiers at 60 GHz
and a microstrip configuration antenna were demonstrated.
Furthermore, the design configured lends itself to a monolithic
implementation.
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