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Abstract— There has been a significant effort to develop
millimeter-wave active-array antennas for communications and
radar applications [1]-[6], [31], [34], [35]. A dielectric waveguide
is a promising medium for this application. However, the
integration of active devices, transmission media, and antennas
has been difficult to achieve. This paper presents the first
successful demonstration of a phase locked array of millimeter
wave grating surface emitters (MMWGSE). We discuss three
aspects of MMWGSE: 1) The achievement of an optically steered
millimeter wave grating surface emitter. 2) The demonstration
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of a frequency locked array of millimeter wave grating surface
emitters. 3) Rigorous analytical studies of efficiently coupling
power from a millimeter wave semiconductor device, to a
waveguide which incorporates grating surface emitters. This
work leads to a full monolithic array using pseudomorphic high
electron mobility transistor (PHEMT)-devices.
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Millimeter-wave surface emitter with optically controlled gratings.Fig, 1
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I. INTRODUCTION

THERE ISA NEED for the development of high efficiency
high power solid state amplifiers that can replace con-

ventional amplifier combining circuits in order to reduce the
losses in the splitters/combiners guiding structures. This can be
achieved by coupling the waves into and out of the amplifiers

through radiating elements (space combining), This approach
has led to an increased interest in the area of quasi-optical and

spatial power amplification, since some of the added benefits
of spatial power combining are: graceful degradation, and the
realization of significant output power levels from modest size
transistors. The use of lower power transistors is beneficial
to the spatial combining scheme as they have lower cost
and are, in general, more efficient than those with relatively
higher power outputs. Spatial combining at X-band has been
successfully demonstrated by others [7]–[ 10], for example:

1)

amplifier and a microstrip antenna coupled at its prox-
imity.
A 4x4 spatial combining array with strongly coupled

Gunn oscillators was demonstrated.
A 100 element heterojunction bipolar transistor (HBT)
grid amplifier was demonstrated at 10 GHz. Self-biased

HBT devices were used as the active devices. The
grid had a 10 dB gain and a 1 GHz 3clB bandwidth.

The maximum output power was 450 mW, and a. 5%

efficiency was reported.

The integration of active devices, transmission media, and
antennas has been difficult to achieve at mm wave frequencies.
Therefore, the task of millimeter-wave system design is lharn-

pered by the unavailability of high-power, compact, broadbaud
millimeter-wave emitters. Available millimeter-wave generat-
ing devices, distribution elements, and radiating structures of

integrated emitters are multi-planar and require complicated
feed elements, which all radiate and degrade the quality

of the desired space combined signal. One solution to this
problem is the use of millimeter-wave grating surface emitters

(MMWGSE), a concept that was introduced in 1982 and
shown in Fig. 1.

Recently, we have demonstrated key aspects of this concept:
1) The optical steering ability of the millimeter wave grating
surface emitter, up to 30°. 2) The frequency locking of the

array of millimeter wave grating surface emitters (MMWCJSE).

Up to six IMPATT-based oscillators, operating at 62 GHz, have
been mutually locked in a 2-D array utilizing top-metallized-
image (TMI) guides with slot-type gratings. However, the
far-field of this structure did not show a confined beam
since no provision was made for phase adjustments between

A nine HEMT spatial amplifier at X-band. The amplifier
was constructed by interconnecting many devices by
microstrip lines. The maximum measured value of gain
was found to be 5.6 dB, and the 3-dB bandwidth of 1
GHz was centered at 10.9 GHz.
A 4x 4 array was constructed at 10 GHz. The measured
results show an EIRP of 25 dBW. an output power
greater than 4W, and a dc-rf conversion efficiency
greater than 18%. Each element consists of a MMIC
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stages. 3) A rigorous analytical study of the coupling scheme
from a millimeter wave semiconductor device to a waveguide
incorporating grating surface emitters. Theory indicates that a
power coupling efficiency to the fundamental waveguide mode
of as high as 6570 can be achieved.

This paper describes our efforts to obtain high power active

antennas at millimeter waves. We lead the reader through
a series of tasks, showing how the constraints of our goals
influence design decisions and changes in our approach.

The investigation of IMPATT sources using both fixed
and optically induced gratings as the antenna elements is
included. We show how system constraints have caused the
redirection of the investigation to PHEMT active elements.
The latter became attractive because of the recent progress in
the development of high efficiency power PHEMT amplifiers
at 60 GHz. The change in active device causes a change in the
wave guiding system resulting in a fixed grating in microstrip
as the antenna element.

In this paper we not only list the many areas of technology
that we have investigated, but also describe the research
process leading up to our final methodology.

In Section II we discuss optically induced gratings and show
how we have achieved greater than 30° steering ability through
the application of a variable periodic optical source.

In Sections III and IV we describe the properties of the TMI

guide and analyze the coupling from the probe to the guide
respectively showing the feasibility of up to 65T0 coupling

efficiency.
In Section V we show how the above concepts lead to

the active array configuration. Experimental results of this
array agree very well with our predicted results. However,
the limitations of IMPATT sources have led us to consider
the use of HEMT’s and MMIC’s which we discuss in Section
VI. We have migrated from TMI guide to microstrip while

preserving the approach of the previous works. Results were
very encouraging and, once again, have agreed with theoretical

predictions. This represents a milestone for an active antenna
array utilizing PHEMT at 60 GHz.

11. OPTICALLY INDUCED GRATINGS IN SILICON AND

SILICON ON SAPPHIRE (SOS) DIELECTRIC GUIDES [3]

The propagation velocity of modes in the dielectric waveg-

uides can be varied dynamically by either electrically or

optically con~olling the dielectric constant. At millimeter-

wave frequencies, a promising technique for controlling the

dielectric constant of materials is the use of free-carrier effects

in the material.

We have extended our dielectric guide work, in which

we use thin layers of a uniform plasma concentration for

controlling the dielectric constant, to layers with periodically

varying concentrations of plasma. Periodic plasma regions are

obtained along the axis of propagation by using a linear array

of injection lasers. The period is varied by exciting specified

lasers of the array.

The first optically induced grating experiment was per-

formed using a 1.4x 1.4 mm dielectric guide. The mask used

had a 0.2 mm grating stripe width and a 1.85-mm grating
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Fig. 2. Experimental setup for a millimeter-wave surface emitter with opti-
cally controlled gratings.

period. Teflon clamps were used to hold the emulsion mask
in contact with the guide (with the emulsion side touching

the guide). The emulsion masks served to create a periodic
pattern of laser energy on the dielectric guide when illuminated
by our high power laser diode array. Teflon and nonmetallic
emulsion materials were selected to minimize interference with
the millimeter waves. A 2D edge-emitting laser diode array
with a power conversion efficiency of 40910was used as the
optical source (Fig. 2). The output of the array was adjusted
to about 150 W. This array was pulsed at a repetition rate of
100 Hz with a pulse width of 10 ~s. An emulsion and a 2-D
edge emitting laser diode array were used to induce a grating
in a dielectric guide carrying a 60 GHz signal, and the far-field

angle at which the peak in the pattern was observed, 0, depends
on the grating period, d. This angle increases with increasing

period: @ = 90° + sin-’ [(&/&) – (&/d)] where & and
& are the free space and guide wavelength, respectively. The
steering angle exceeded 30° from broadside as demonstrated
by comparing the main lobe angle for five different masks.
The measured and the theoretical values of these angles are

illustrated in Fig. 3. Since we are using an incoherent laser
source with a beam divergence of +26°, the period of the
induced grating is slightly greater than the period of the printed

grating on the mask. Therefore the far field angle is greater
than the expected angle by a few degrees. Fig. 4 depicts SOS
optically induced gratings (OIG) steering at 60 GHz.

III. TMI GUIDE MODES [ 11]-[14]

In this work, we analyze a new coupling and waveguide
structure designed to meet the needs for efficiently coupling
power from a millimeter-wave semiconductor device, such as
an IMPATT. The waveguide incorporates a grating surface
emitter (IMPATT devices at 60 GHz were considered because
of their high power capability).

The photograph in Fig. 5 identities the critical parts of
the millimeter-wave grating surface emitter (MMWGSE). An
IMPATT is mounted at the bottom of a cylindrical cavity in
the ground plane below the waveguide (see Fig. 6). The RF
energy is coupled into the waveguide through a cylindrical
post coming from the top of the IMPATT, passing through the
dielectric, and contacting the top metal, Periodic slits in the top

metal form a second-order grating which acts as the antenna,
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Fig. 3. The measured and theoretical main lobe angle for various grating
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Fig. 4. Steering at 60 GHz (in SOS guide).

Fig. 5. Photograph of device showing the critical parts,

This structure introduces several beneficial features that

maximize power coupling into the waveguide, facilitates mu-

tual coupling of IMPATTS in the longitudinal direction for

linear arrays, and provides energy for lateral coupling to

adjacent waveguides through leaky waves for two-dimensional

a-rays. In the following paragraph we present a model for

understanding the MMWGSE. In addition we calculate the

power coupling into the waveguide and cite measurements in

support of the model.

The waveguide consists of a top-metallized dielectric of

height b and width 2a over a ground plane forming a top-

metallized image guide (TMI-guide) which is strongly similar

to an H-guide. We justify this claim by comparing the modes

of the two waveguides. We numerically solve the vector

IMPATT METAL
//

Fig. 6. Cross-section of waveguide, cavity, and post.

0.1

NUMERICAL SIMULATION

()
H-GUIDE ANALYSIS

----- -----

o.i4 0.15 0.16 0.17 0.18 0.19 0.2

GUIDE SIZE, 2A (CM)

Fig. 7. Comparison of numerical solution for modes in the TM-guide and

analytic solutions for modes in an H-guide.

wave equation for the TMI-guide and analytically solve the

wave equation for the H-guide [15], [16]. Fig. 7 shows

that the fundamental model of both guides has the same

guided wavelength as a function of width. Furthermore, the

wavelengths of the next order modes are within 5% of one

another.

H-guides support two classes of modes bound to the di-

electric which are denoted by PEmn and PMmn. The 1?Emo

modes, which have no variation in the y direction and therefore

no z component, are equivalent to TEmo modes and are the

modes that are launched by a uniform source (with respect to

y). If the source is also symmetrical in both placement and

current flow (with respect to z), then only even PE~o modes

will be excited. Lateral leaky modes, which are present in

finite H-guides (and therefore TMI-guides), reduce the power

coupling from the post to the bound modes.

IV. POST EXCITATION OF THE WAVEGUIDE

Complete theoretical solutions for the coupling of RF power

using a probe in a rectangular metal waveguide have lbeen

obtained [17]. Because of the difficulty in extending this earlier

work to dielectric guides, we have used a different apprclach.

Since the TMI-guide is an open guide with both continuous

and discrete spectrums, we approximate the TMI-guide by

an H-guide and then close the ends to form a rectangular

waveguide as shown in Fig. 8. This configuration has several

advantages: a) the closed waveguide makes the spectrum

discrete, thereby simplifying the mathematics, b) the modes

may be calculated analytically using the transverse-resonance

method [18], and c) by letting the waveguide width, 2c, go to

infinity we recover the H-guide.

Several modes of this waveguide are shown in Fig. 9. The

fundamental mode is bound to the dielectric and the higher-

order modes belong to the rectangular waveguide. These

higher order modes approximate the leaky modes of the H-
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Fig. 8. Cross section ofmodel used forcalculating power coupling.
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Fig, 9. Modes of the dielectrically loaded rectangular waveguide
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Fig. 10. Modes of the dielectrically loaded rectangular waveguide
(c= 250a, a =0.07 cm, f=60GHz).

guide (TMI-guide). As c is increased, the bound mode remains

unchanged but the higher-order modes increase in number,

thereby approximating the continuous part of the spectrum.

Fig. 10 shows the mode spectrum for the even modes.

The calculation of coupling from the post to the waveguide

modes is based on the assumption that the post thickness is

negligible (.z direction) and it can be treated as a rectangular

strip. Although this is a serious assumption, we believe that it
primarily affects an equivalent circuit for the post rather than

the power coupling from the cavity to the waveguide.

Overlap integrals of the strip and the modes are computed.

Since the overlap integral is proportional to the power coupled

to a mode, the ratio of the overlap integral of the dielectric

bound mode to those of all the propagating modes is the

power coupling coefficient. Fig. 11 shows the results of these

calculations for several values of post diameter, d, and rect-

angular wavegttide width. We found that the power coupling

coefficient varied linearly with respect to @. When the

calculations are extrapolated to c ~ cc, the power coupling

coefficient for the H-guide (TMI-guide) is found.

Measurements were made in TMI-guides with and without a

grating [19]. On structures without the grating we measured the

power coupled to the guides by inserting a tapered section of

TMI-guide into a standard V-band measurement fixture based

on a rectangular waveguide. Record power was achieved: 427

mW at 62 GHz, as measured with a standard V-band metal

0.6

0.5
rho.lA

J7a
c

Fig. 11. The power coupling coefficient versus @ (a = 0.07,

c1 = 0.4a,0.3a,0.1a, f = 60 GHz).
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Fig, 12. Measured (a) and computed (b) far fields (Af = 90° and
a = 0.5 cm–l).

waveguide test bed. This is a factor of four higher than power

from oscillators that were fabricated from either dielectric

waveguide or image guide. We compared this power to the

power achievable by the same IMPATT in a reduced height

coaxial metal cavity and found the ratio to be 0.65, which

closely corresponds to our calculation of 0.62 as shown in

Fig. 11.

V. 2-D ACTIVE ANTENNA UTILIZING

IMPATT DEVICES [19]-[28]

Two IMPATT diodes have successfully and repeatedly been

mutually locked to one another in one TMI guide with a

93% grating. Fig. 12 shows a comparison of measured and

calculated fw-field patterns. The calculated far field is based

upon the theoretical near field pattern for a single propagating

bound mode which varies as exp (– Iazl + j(A@/2) sign (z))

where Ad is the excess phase introduced across the post

coupling region and cr is the attenuation rate in the waveguide

due to the grating radiation and losses.

The far field has two symmetrical split beams. The symmet-
rical beams are due to the two grating antennas being situated

on either side of the millimeter wave source and radiating

away from the second bragg condition. The split beam is a

consequence of phase delays introduced by the IMPATT/post

structure as shown in Fig. 12. The split in each lobe is due to

an estimated phase shift of about 90°. The agreement between

the two patterns supports our contention that a single bound

mode exists. The gain of this active antenna was measured to

be 10 dB approximately.

A new set of measurements featuring three IMPATT diodes

oscillating at the frequency of 61.7 GHz was performed.

In these tests, all three IMPATT devices in the linear array
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Fig. 17. 2-D array.

Fig. 15. The right and left oscillators are locked to one another and are
beating with the center cell of the three element linear array.

locked to one another. Fig. 13 depicts diode oscillation in the

left circuit of the linear array. Fig. 14 depicts the right and

left circuits locked to one another. Fig. 15 depicts the right

and left circuits locked and the center beating with it (just

before locking). Fig. 10 depicts the three diode MMWGSE, in

operation (all oscillator circuits locked to one another), Each

time an additional diode was biased, the power level emitted

by the active, linear array and detected in the far-field increased

(by an average of 2.25 dB with each additional diode). The
far field of this structure did not show a confined beam, since

no provision was made for phase adjustments.

Finally, we were successful in introducing two linear arrays,
each consisting of three locked IMPATT oscillators, side by

side (constituting a 2-D array having six locked IMPATT

devices), Fig. 17. This accomplishment indicates that a large

ced to one
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Fig. 18. New approach utilizing HEMT devices.

number of millimeter wave devices can be locked to one

another through MTI guides without the utilization of isolators.

The incremental phase between the radiating elements is

adjusted, thus a far field can be achieved with a confined

main beam. However, the IMPATT diode is a one port device,

and its energy is coupled to the gratings on both sides of

the IMPATT cavity. Hence, phase adjustments as well as the

gratings’ uniformity are very critical.

VI. A LINEAR ACTIVE ANTENNA UTILIZING IPHEMT–-A

FIRST STEP FOR MONOLITHIC ARRAY CONFIGURATION

As a consequence ok 1) the difficulty in providing a single

main beam when using an IMPATT device between two sets
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of gratings (when the gratings are radiating off the Bragg

condition), 2) the increased difficulty in processing IMPATT

devices utilizing the MMIC approach, and 3) the availability

of potential high efficient high power PHEMT’s, we have

investigated the possibility of replacing the IMPATT devices

by PHEMT devices.

PHEMT’s are making rapid progress in millimeter wave

power amplifier applications, and very encouraging results are

being reported for as high as 94 Hz [29], [30].

TRW [29] has reported a two stage amplifier with better

than 370 mW output power, a compressed gain of 7 dB and

greater than 11% power-added efficiency over the frequency

range of 59.5–63.5 GHz. With low loss planar combiners, these

modules produced an output power of 740 mW with a power

gain of 11.68 dB.

VII. MICROSTRIP BASED GRATINGS

The design of wideband microstrip arrays is outlined here.

A simple configuration of series or parallel arrays is used. By

selecting the resonant frequency of each element according

to the bandwidth requirements, a reasonably good bandwidth

with acceptable VSWR can be achieved. Hence, the return loss

can be made flat rather than selective at any specific frequency.

A large number of elements and wide band match-terminations

for traveling wave arrays need to be used. Elements are

connected to the main feed at a distance of n~g /2 from the

termination, and spaced Ag/4 apart as each segment is a Ag/4

matching transformer to the 50 ohms. A /3 – k diagram can be

used to derive the propagation characteristics of this periodic

structure as shown by [33] and given by the following formula

.zO
coskd+j —

2Z11
sin kd

COS& d =

1 –j$sinkd

pa=p+.jo!

k. = 27r&/Ao (1)

where pa is the complex propagation constant, Z. and k are

the feedline characteristic impedance and wavenumber respec-

tively, Z11 and 212 are the self and mutual impedances of the

resonant element taking successive coupling into account, d is

the interelement spacing, k. is the effective wavenumber, and

S,ff is the effective dielectric constant.

The bandwidth of these radiating elements is limited due to

the existence of stop bands in the k – /? diagram. The main

beam direction can be calculated from the following equations

dsin O+&l=A=~
f

(2)

where O is the main beam angle, d is the interelement spacing

in air, 1 is the length of the transmission line joining the

successive elements, c is the speed of light in the dielectric,

Er is the dielectric constant, and ~ is the frequency of

operation [33]. The amplitude distribution along the array can

be adjusted for low side lobe level performance simply, by

changing the width of these radiating patch elements.

Simple calculations using d = 1.78 nm, 1 = 0,1 mn, f =
60 GHz, e, = 13 have indicated a main beam angle of 35

PREDiCTED ARRAY PERFORMANCE AT 55.7 GHZ
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Fig. 19. Calculated subarray radiation pattern, and the predicted whole array

pattern due to the contributions of such two subarrays.
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Fig. 20. Measured radiation pattern of a subarray at f = 55.7 GHz.
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Fig. 21. The measured radiation pattenr of two subarrays.

degrees off broadside (Fig. 19), which is in close agreement
with the measurements, as seen in Fig. 20.

A combined PHEMT amplifier with a microstrip grating an-

tenna comprises a “unit cell.” Fig. 22 depicts the combination

of two unit cells creating a one-dimensional (linear) antenna.

Experimental Results:

We have analyzed the periodic structure using a circuit ana

lysis program (Touchstone), and an EM Simulator (Ensemble).

The structure was modeled as successive wide transmission

lines of 0.13 mm in width and 1.68 mm in length that are

followed by narrow transmission lines 0.02 mm in width
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Fig. 22. Twounit cells creating aone-dimensional (linea) antenna.

and 0.1 mm in length. The structure consisted of 7 such

narrow lines connected to 50-ohm terminations on both sides.

The analysis showed a good VSWR performance over the

55–60 GHz frequency range (less than 2: 1). The measured

results agree closely with the predicted results. In addition,

a transmission loss of 3 dB was measured over an overall

transmission line of 10 mm in length (that includes all succes-

sive gap-discontinuities), which matches the predicted values

closely.

We have used both (l), (2) and the EM simulation program

ENSEMBLE to predict the radiation pattern of this series fed

array. Equation (2) showed that a main beam should exit at

an angle of 35 degrees off broadside. The radiation pattern

as well as input-output return loss were also calculated. The

pattern at 60 GHz, for example, has a beam at 35 degrees,

which is very close to the value predicted by (2) and agrees

very well with the measured results as seen in Fig. 20. The

side lobe levels are relatively high since no effort was directed

towards lowering their levels by controlling the amplitude or

phase distribution of the whole array.

The antenna gain was measured relative to a standard

feedhorn. The feedhorn was measured first in order to calibrate

the system. Measurements of the microstrip grating antenna

showed a 4 dB higher gain as compared to the horn antenna,

indicating a relatively high 659. efficiency as calculated by

G/A = (47r/)2)q.

Two such subarrays were connected in cascade to inves-

tigate spatial combining. The two subarrays were spaced

400 roils apart and the array factor of such an assembly

is shown in Fig. 21. As expected the combined measured

pattern showed the power combining from the two subarrays

as the signal was increased by almost 2 dB, and the sidelobe

levels and the number of nulls are related to the spacing

between the two subarrays. Performance of this array can

be significantly improved by eliminating the long section of

interconnecting transmission lines between the two subarrays

and by introducing some phase adjustments. Based on the

input power of 5 mW, the MMIC amplifier power gain of
6 dB at 56.5 GHz, and a radiated efficiency of 65%, the

estimated output power of a unit cell is 13 mW. The output

power from the MMIC amplifier chip used in our experiments

saturated above 5 mW of input power. The radiating structure

has yielded a bandwidth of at least 1 GHz. This is the

first demonstration of an active linear array antenna utilizing

2123

PHEMT at V-band. Furthermore, this design COtIfigU@iOII

lends itself to a monolithic implementation.

VIII. CONCLUSION

The three major components for a steerable millimeter

wave active antenna were obtained: 1) an optically steered

millimeter wave grating surface emitter with a 30° shift;

2) a phase locked active antenna with up to six IMF?ATT

oscillators; and 3) an analysis of a new coupling structure

and waveguide. Theory indicated a single bound mode with

a coupling efficiency of as high as 65Y0. In addition, a linear

active antenna utilizing two PHEMT amplifiers at 60 GHz

and a microstrip configuration antenna were demonstrated.

Furthermore, the design configured lends itself to a monolithic

implementation.
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